organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,5-Bis(methoxymethyl)-1,4-dioctyloxybenzene

Hai-Guang Zhang,^a* Qin-Zheng Yang,^b Wen-Tao Yu,^c Xu-Tang Tao^c and Min-Hua Jiang^c

^aCollege of Chemical Sciences, Qufu Normal University, Qufu 273165, People's Republic of China, ^bDepartment of Food and Bioengineering, Shandong Institute of Light Industry, Jinan 250100, People's Republic of China, and ^cState Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China

Correspondence e-mail: haiguangzhang2006@126.com

Received 4 July 2007; accepted 8 August 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.074; wR factor = 0.204; data-to-parameter ratio = 24.5.

The title molecule, $C_{26}H_{46}O_4$, has $\overline{1}$ symmetry. The non-H atoms of the octyloxy and methoxymethyl chains are almost coplanar with the benzene ring. There are weak $C-H\cdots O$ hydrogen bonds and $C-H\cdots \pi$ -ring interactions in the structure. The molecules are loosely packed in the structure. The unit-cell volume is 20% larger than is expected from the empirical rule pertinent to organic compounds, which states that the unit-cell volume (Å³) is approximately equal to the number of non-H atoms in the unit cell multiplied by 18.

Related literature

For related literature regarding the synthesis of the title compound, see: Wang & Wasielewski (1997). For related literature, see: Kempster & Lipson (1972); Spek (2003).

Experimental

Crystal data

 $C_{26}H_{46}O_4$ $M_r = 422.63$ Triclinic, $P\overline{1}$ a = 6.6253 (9) Å

b = 8.8218 (9) A
c = 11.7625 (15) Å
$\alpha = 106.662 \ (8)^{\circ}$
$\beta = 95.398 \ (10)^{\circ}$
$\gamma = 96.066 \ (9)^{\circ}$
$V = 649.32(14) \text{ Å}^3$

Data collection

Bruker P4 diffractometer	3375 independent reflections
Absorption correction: ψ scan	1622 reflections with $I > 2\sigma(I)$
(XSCANS; Bruker, 1996)	$R_{\rm int} = 0.044$
$T_{\min} = 0.746, T_{\max} = 0.884$	3 standard reflections
(expected range = 0.829 - 0.983)	every 97 reflections
4198 measured reflections	intensity decay: 1.2%

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.074$ 138 parameters $wR(F^2) = 0.204$ H-atom parameters constrainedS = 1.05 $\Delta \rho_{max} = 0.20 \text{ e } \text{ Å}^{-3}$ 3375 reflections $\Delta \rho_{min} = -0.21 \text{ e } \text{ Å}^{-3}$

Z = 1

Mo $K\alpha$ radiation

 $\mu = 0.07 \text{ mm}^-$

T = 293 (2) K $0.48 \times 0.38 \times 0.25 \text{ mm}$

Table 1

Geometry of hydrogen bonds and $D - H \cdots \pi$ interactions (Å, °).

Cg1 is the centroid of the C1-C3/C1ⁱ-C3ⁱ ring.

D HA	лн	Н4	Decid	D H4
D-II. A	$D = \Pi$	11	D···A	D-II···A
$C1 - H1A \cdots O2^{i}$	0.93	2.41	2.747 (3)	101
$C5-H5B\cdots Cg1^{ii}$	0.97	2.93	3.750 (2)	143
$C5 - H5B \cdots Cg1^{iii}$	0.97	2.93	3.750 (2)	143

Symmetry codes: (i) -x, -y, -z + 1; (ii) x + 1, y, z; (iii) -x + 1, -y, -z + 1.

Data collection: *XSCANS* (Bruker, 1996); cell refinement: *XSCANS*; data reduction: *SHELXTL* (Bruker, 1997); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors gratefully acknowledge the financial support of the State National Natural Science Foundation of China (grant Nos. 50325311 and 50402018) and the Research Startup Foundation of Qufu Normal University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2057).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bruker (1996). XSCANS. Version 2.2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
- Kempster, C. J. E. & Lipson, H. (1972). Acta Cryst. B28, 3674.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Wang, B. & Wasielewski, M. R. (1997). J. Am. Chem. Soc. 119, 12-21.

supplementary materials

Acta Cryst. (2007). E63, o3778 [doi:10.1107/S1600536807039219]

2,5-Bis(methoxymethyl)-1,4-dioctyloxybenzene

H.-G. Zhang, Q.-Z. Yang, W.-T. Yu, X.-T. Tao and M.-H. Jiang

Comment

The title molecule (Fig. 1) is situated on a crystallographic inversion centre. The non-hydrogen atoms of the octyloxy chains and methoxylmethyl chains are almost coplanar with the benzene ring. The structure is interesting for its loose packing. The unit cell volume of the title structure is by 1.20 larger than it is expected if the 18 Å³ rule of the volume per non-hydrogen atom in the structure is taken into account (Kempster & Lipson, 1972). Despite the loose packing there are no large voids in the structure (Spek, 2003).

Experimental

In accordance with preparative methods of similar compounds (Wang & Wasielewski, 1997), 6 ml of the solution of HBr in acetic acid (100 ml of the latter solution contained 31 g of HBr) was added at once to a suspension of 1,4-bis(octyloxy)benzene (5.9 g, 15.1 mmol) and paraformaldehyde (0.93 g, 31.0 mmol) in acetic acid (50 ml). This mixture was then heated to 60–70 °C under stirring for 2 h.

After cooling down to room temperature, the suspension was poured into 300 ml of water. The precipitate was filtered and dissolved in 30 ml of hot chloroform (temperature: 50–55 °C), then 50 ml of methanol was added under stirring. After cooling to room temperature, the white solid was filtered off and dried under vacuum.

The white solid was dissolved in petroleum ether that boils in the interval 60–90°C. The crystals suitable for X-ray structure determination were obtained by slow evaporation at room temperature.

¹HNMR and ¹³CNMR were determined with a Bruker Avance 400 MHz NMR spectrometer with tetramethylsilane as an internal standard.

¹H NMR (CDCl₃, 400 MHz) δ (p.p.m.) 6.91 (s, 2 H), 4.48 (s, 4 H), 3.93 (m, 4 H), 3.42 (s, 6 H), 1.76 (m, 4 H), 1.45 (m, 4 H), 1.32 (m, 18 H), 0.89 (t, 6 H); ¹³C NMR (CDCl₃, 400 MHz) δ (p.p.m.) 150.0, 126.1, 111.9, 76.57, 68.73, 68.46, 57.86, 31.35, 28.98, 28.86, 28.78, 25.66, 13.60.

Refinement

All the H atoms could be found in the difference Fourier maps. Nevertheless, they were placed into the idealized positions and refined in a riding atom approximation with following constraints: $C_{methyl} - H_{methyl} = 0.96$; $C_{methylene} - H_{methylene} = 0.97$; $C_{aryl} - H_{aryl} = 0.93$ Å. $U_{iso}H = 1.2U_{eq}C$ except for methyls where $U_{iso}H = 1.5U_{eq}C$.

Figures

Fig. 1. The molecular structure of title compound showing 50% probability displacement ellipsoids.

Fig. 2. The packing diagram of the title structure.

2,5-Bis(methoxymethyl)-1,4-dioctyloxybenzene

Crystal data	
C ₂₆ H ₄₆ O ₄	Z = 1
$M_r = 422.63$	$F_{000} = 234$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.081 { m Mg m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 6.6253 (9) Å	Cell parameters from 61 reflections
b = 8.8218 (9) Å	$\theta = 4.9 - 15.1^{\circ}$
c = 11.7625 (15) Å	$\mu = 0.07 \text{ mm}^{-1}$
$\alpha = 106.662 \ (8)^{\circ}$	T = 293 (2) K
$\beta = 95.398 \ (10)^{\circ}$	Prism, colourless
$\gamma = 96.066 \ (9)^{\circ}$	$0.48\times0.38\times0.25~mm$
$V = 649.32 (14) \text{ Å}^3$	

Data collection

Bruker P4 diffractometer	$R_{\rm int} = 0.044$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 29.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 3.1^{\circ}$
T = 293(2) K	$h = -8 \rightarrow 1$
ω scans	$k = -11 \rightarrow 11$
Absorption correction: ψ scan (XSCANS; Bruker, 1996)	$l = -16 \rightarrow 16$
$T_{\min} = 0.746, \ T_{\max} = 0.884$	3 standard reflections
4198 measured reflections	every 97 reflections
3375 independent reflections	intensity decay: 1.2%
1622 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: difference Fourier map

 $R[F^2 > 2\sigma(F^2)] = 0.074$ H-atom parameters constrained $wR(F^2) = 0.204$ $w = 1/[\sigma^2(F_o^2) + (0.0902P)^2]$ $where P = (F_o^2 + 2F_c^2)/3$ S = 1.05 $(\Delta/\sigma)_{max} < 0.001$ 3375 reflections $\Delta\rho_{max} = 0.20 \text{ e } \text{Å}^{-3}$ 138 parameters $\Delta\rho_{min} = -0.21 \text{ e } \text{Å}^{-3}$ 84 constraintsExtinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
01	0.3812 (2)	0.14518 (16)	0.61889 (13)	0.0605 (5)
02	0.0976 (3)	0.33836 (18)	0.38263 (15)	0.0781 (6)
C1	0.0952 (3)	-0.0715 (2)	0.57603 (17)	0.0481 (6)
H1A	0.1603	-0.1192	0.6275	0.058*
C2	0.0963 (3)	0.1405 (2)	0.48497 (17)	0.0457 (5)
C3	0.1910 (3)	0.0668 (2)	0.56160 (18)	0.0468 (5)
C4	0.4938 (3)	0.0743 (2)	0.69460 (19)	0.0504 (6)
H4A	0.5184	-0.0312	0.6493	0.061*
H4B	0.4179	0.0642	0.7593	0.061*
C5	0.6946 (3)	0.1825 (2)	0.74413 (18)	0.0519 (6)
H5A	0.6666	0.2895	0.7830	0.062*
H5B	0.7705	0.1874	0.6784	0.062*
C6	0.8262 (3)	0.1272 (2)	0.83323 (19)	0.0515 (5)
H6A	0.7490	0.1190	0.8978	0.062*
H6B	0.8585	0.0217	0.7937	0.062*
C7	1.0233 (3)	0.2394 (2)	0.88503 (19)	0.0543 (6)
H7A	0.9905	0.3455	0.9223	0.065*
H7B	1.1014	0.2455	0.8204	0.065*
C8	1.1552 (3)	0.1891 (3)	0.97676 (19)	0.0573 (6)
H8A	1.1896	0.0838	0.9389	0.069*
H8B	1.0758	0.1810	1.0405	0.069*
C9	1.3533 (3)	0.3028 (3)	1.0317 (2)	0.0592 (6)
Н9А	1.4318	0.3123	0.9679	0.071*

supplementary materials

H9B	1.3189	0.4078	1.0707	0.071*
C10	1.4858 (3)	0.2508 (3)	1.1217 (2)	0.0662 (7)
H10A	1.4068	0.2397	1.1849	0.079*
H10C	1.5225	0.1467	1.0824	0.079*
C11	1.6788 (4)	0.3651 (3)	1.1768 (3)	0.0897 (9)
H11A	1.7535	0.3271	1.2346	0.135*
H11B	1.6441	0.4687	1.2156	0.135*
H11C	1.7618	0.3723	1.1154	0.135*
C12	0.2062 (3)	0.2960 (2)	0.47022 (18)	0.0476 (5)
H12A	0.2199	0.3812	0.5452	0.057*
H12B	0.3424	0.2800	0.4497	0.057*
C13	0.1897 (4)	0.4850 (3)	0.3717 (2)	0.0841 (9)
H13A	0.1130	0.5101	0.3077	0.126*
H13B	0.3276	0.4759	0.3548	0.126*
H13C	0.1909	0.5683	0.4452	0.126*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0485 (9)	0.0573 (9)	0.0761 (10)	-0.0090(7)	-0.0201 (8)	0.0353 (8)
02	0.0733 (11)	0.0697 (10)	0.0955 (12)	-0.0189 (9)	-0.0216 (10)	0.0518 (9)
C1	0.0416 (12)	0.0495 (11)	0.0541 (12)	-0.0006 (9)	-0.0102 (10)	0.0243 (10)
C2	0.0409 (11)	0.0458 (11)	0.0502 (12)	-0.0006 (9)	-0.0039 (10)	0.0195 (9)
C3	0.0346 (11)	0.0486 (11)	0.0532 (12)	-0.0057 (9)	-0.0096 (9)	0.0177 (9)
C4	0.0410 (12)	0.0537 (12)	0.0577 (13)	-0.0012 (9)	-0.0099 (10)	0.0263 (10)
C5	0.0434 (12)	0.0516 (12)	0.0588 (13)	-0.0041 (10)	-0.0082 (10)	0.0220 (10)
C6	0.0423 (12)	0.0560 (12)	0.0553 (12)	-0.0022 (10)	-0.0083 (10)	0.0233 (10)
C7	0.0460 (13)	0.0540 (12)	0.0604 (13)	-0.0052 (10)	-0.0083 (11)	0.0222 (10)
C8	0.0444 (12)	0.0618 (13)	0.0635 (14)	-0.0050 (11)	-0.0105 (11)	0.0251 (11)
C9	0.0470 (13)	0.0623 (14)	0.0631 (14)	-0.0064 (11)	-0.0122 (11)	0.0216 (11)
C10	0.0531 (14)	0.0697 (15)	0.0700 (15)	-0.0027 (12)	-0.0175 (12)	0.0237 (12)
C11	0.0639 (17)	0.101 (2)	0.0935 (19)	-0.0119 (15)	-0.0290 (15)	0.0328 (16)
C12	0.0333 (11)	0.0479 (11)	0.0563 (12)	-0.0026 (9)	-0.0104 (9)	0.0153 (9)
C13	0.0745 (19)	0.0752 (17)	0.114 (2)	-0.0097 (14)	-0.0009(17)	0.0585 (16)

Geometric parameters (Å, °)

O1—C3	1.382 (2)	C7—H7A	0.9700
O1—C4	1.426 (2)	С7—Н7В	0.9700
O2—C12	1.363 (2)	C8—C9	1.528 (3)
O2—C13	1.416 (2)	C8—H8A	0.9700
C1—C3	1.377 (3)	C8—H8B	0.9700
C1—C2 ⁱ	1.382 (2)	C9—C10	1.514 (3)
C1—H1A	0.9300	С9—Н9А	0.9700
C2—C3	1.394 (3)	С9—Н9В	0.9700
C2—C12	1.547 (3)	C10—C11	1.506 (3)
C3—C2	1.394 (3)	C10—H10A	0.9700
C4—C5	1.512 (2)	C10—H10C	0.9700

C4—H4A	0.9700	C11—H11A	0.9600
C4—H4B	0.9700	C11—H11B	0.9600
C5—C6	1.519 (3)	C11—H11C	0.9600
С5—Н5А	0.9700	C12—C2	1.547 (3)
С5—Н5В	0.9700	C12—H12A	0.9700
C6—C7	1.513 (2)	C12—H12B	0.9700
С6—Н6А	0.9700	C13—H13A	0.9600
С6—Н6В	0.9700	C13—H13B	0.9600
С7—С8	1.518 (3)	C13—H13C	0.9600
C3—O1—C4	118.11 (15)	С7—С8—Н8А	108.7
C12—O2—C13	111.18 (17)	С9—С8—Н8А	108.7
C3—C1—C2 ⁱ	120.90 (18)	С7—С8—Н8В	108.7
C3—C1—H1A	119.6	С9—С8—Н8В	108.7
C2 ⁱ —C1—H1A	119.6	H8A—C8—H8B	107.6
C1 ⁱ —C2—C3	118.55 (17)	C10—C9—C8	114.05 (19)
C1 ⁱ —C2—C12	121.69 (17)	С10—С9—Н9А	108.7
C3—C2—C12	119.77 (17)	С8—С9—Н9А	108.7
C1—C3—O1	125.25 (18)	С10—С9—Н9В	108.7
C1—C3—C2	120.56 (17)	С8—С9—Н9В	108.7
O1—C3—C2	114.19 (17)	Н9А—С9—Н9В	107.6
O1—C4—C5	107.17 (16)	C11—C10—C9	113.6 (2)
O1—C4—H4A	110.3	C11—C10—H10A	108.8
С5—С4—Н4А	110.3	C9—C10—H10A	108.8
O1—C4—H4B	110.3	C11-C10-H10C	108.8
C5—C4—H4B	110.3	С9—С10—Н10С	108.8
H4A—C4—H4B	108.5	H10A—C10—H10C	107.7
C4—C5—C6	113.12 (17)	C10-C11-H11A	109.5
C4—C5—H5A	109.0	C10-C11-H11B	109.5
С6—С5—Н5А	109.0	H11A—C11—H11B	109.5
C4—C5—H5B	109.0	C10-C11-H11C	109.5
С6—С5—Н5В	109.0	H11A—C11—H11C	109.5
H5A—C5—H5B	107.8	H11B—C11—H11C	109.5
C7—C6—C5	112.50 (17)	O2—C12—C2	110.14 (15)
С7—С6—Н6А	109.1	O2—C12—H12A	109.6
С5—С6—Н6А	109.1	C2—C12—H12A	109.6
С7—С6—Н6В	109.1	O2—C12—H12B	109.6
С5—С6—Н6В	109.1	C2—C12—H12B	109.6
H6A—C6—H6B	107.8	H12A—C12—H12B	108.1
C6—C7—C8	113.56 (17)	O2-C13-H13A	109.5
С6—С7—Н7А	108.9	O2—C13—H13B	109.5
C8—C7—H7A	108.9	H13A—C13—H13B	109.5
С6—С7—Н7В	108.9	O2—C13—H13C	109.5
С8—С7—Н7В	108.9	H13A—C13—H13C	109.5
H7A—C7—H7B	107.7	H13B—C13—H13C	109.5
С7—С8—С9	114.26 (18)		

Symmetry codes: (i) -x, -y, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C1—H1A···O2 ⁱ	0.93	2.41	2.747 (3)	101
C5—H5B···Cg1 ⁱⁱ	0.97	2.93	3.750 (2)	143
C5—H5B···Cg1 ⁱⁱⁱ	0.97	2.93	3.750 (2)	143

Symmetry codes: (i) -x, -y, -z+1; (ii) x+1, y, z; (iii) -x+1, -y, -z+1.

Fig. 1

